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Abstract

This article presents a numerical study of the effect of the radiative heat transfer on the three-dimensional convection in a cubic dif-
ferentially heated cavity for different optical parameters of the medium, Pr = 13.6 and Ra = 10°. The natural convection equations, using
the Boussinesq approximation for the treatment of buoyancy term in the momentum equation, are expressed using the vorticity-stream
function formulation. These equations and the radiative transfer equation are discretized, respectively, with the control volume finite
difference method and the FTn finite volume method. The successive relaxation-iterating scheme is used to solve the resultant algebraic
system equations. Results show that the structure of the main flow is considerably altered by of the conduction-radiation parameter. The
inner spiraling flows are found very sensible in location and direction to the radiative heat transfer. However, the peripheral spiraling
motion is qualitatively insensitive to these parameters. It is also found that radiation favorites the merging of the vortices near the front

and back walls.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Natural convection in differentially heated rectangular
enclosure has received considerable attention in the recent
heat transfer studies (Mallinson and de Vahl Davis, 1977;
Lee et al., 1988; Fusegi et al., 1991a,b, 1992; Salat et al.,
2004, etc.). For air filled cavity the flow is stable for Ray-
leigh number Ra < = 10°® and manifests one or two vorti-
ces pattern at the XY-mid-plane (Fig. 1). For higher
values of Ra, oscillations appear and the flow becomes
unstable. In recent times, Tric et al. (2000) benchmark this
problem using a pseudo-spectral Chebyshev algorithm. A
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latest analysis of benchmark numerical studies for 3D nat-
ural convection in an air filled cubic cavity is effectuated by
Pepper and Hollands (2002). More recently, Wakashima
and Saitoh (2004) used the high-order time-space method
to benchmark this problem. Janssen et al. (1993) studied
the transition to time periodicity in such problem and men-
tioned that the corresponding period is almost the same as
for 2D square cavity but the distribution of the amplitude
of the oscillations is remarkably three-dimensional. Mallin-
son and de Vahl Davis (1977) and Fusegi et al. (1991a) ana-
lyzed the three-dimensional structure of the flow. Similar
works exist for liquid-metals (Viskanta et al., 1986; Henry
and Buffat, 1998; Juel et al., 2001; Piazza and Ciofalo,
2002, etc.) and high Prandtl number fluids (Hiller et al.,
1989, 1990).

As mentioned above, the main flow observed at the mid
plane or by 2D modeling presents one or two vortices
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Nomenclature

g acceleration of gravity

I dimensionless radiant intensity, [ =1"/(n’c

71 \4

(T0)*/n)

P dimensionless black body intensity, 1° = 1%/
("o (T0)* /m)

L total number of discrete solid angles

Ly total number of discrete solid angles oriented to
a given boundary

N dimensionless quantity, N = Jao Qi dQ

n refractive index

n unit vector normal to the control volume
surface

Pr Prandtl number, Pr = v/o

qec dimensionless local conductive heat flux on iso-
thermal walls

qr dimensionless local radiative heat flux on iso-

thermal walls
Ra Rayleigh number, Ra = Brg(T}, — TL)W?/(var)

Rc radiation conduction parameter, Rc = n?WT?3
a/l

s distance in the direction € of the intensity

S Stratification factor (&

T dimensionless  temperature, 7 = (7"-T.)/
(T}~ T0)

t dimensionless time, 7 = o'/ W?

h hot wall temperature

T, cold wall temperature

14 dimensionless velocity V = V'W /o

w enclosure width

X, ¥, z dimensionless Cartesian coordinates, x = x'/W,

y=yIW,z==2IWw

Greek symbols

o thermal diffusivity

b coefficient of thermal expansion

br extinction coefficient, f, = g, + K

AA area of a control volume face

Av control volume

AQ control solid angle

& emissivity

@ temperature ratio, ¢ = T} /T, — 1

K absorption coefficient

A thermal conductivity

v kinematic viscosity

g Stefan—Boltzmann constant

oy scattering coefficient

T optical width, = . W

@ dimensionless vorticity vector, @ = @' W?/a
o scattering albedo, wy = 7,/

Q unit vector in the direction of the intensity
1) dimensionless vector potential, ¢ = ¢’ /a
Subscript

e, w, n,s, t, b faces of control volume centered in P
E, W, N, S, T, B nodes around the nodal point P
P nodal points

Superscript

! real variables

Ll discrete angular directions
1 X-component

2 y-component

3 z-component

transporting the fluid back and forth between the isother-
mal walls. The three-dimensional flow structure consists
of one or two inner spiraling motions sustaining the trans-
verse flow between the front or back walls and the center of
the box and a large spiraling flow near the lateral walls.
This is partially proved in the revealing experimental work
of Hiller et al. (1989) which brings to the fore the spiraling
character of the 3D flow of 6000-Prandtl number liquid. In
fact, in the neighborhood of the vortices centers, the flow
spirals from the back and front walls toward the XY-
mid-plane and conversely in the outer regions. About mid-
way between this plane and the front or back walls, one of
these vortices disappears and the second vortex appears to
be twisted with its ends around the first one. These inward
spiral circulation in the center and outward circulation
near the side walls are already predicted by the numerical
work of Mallinson and de Vahl Davis (1977). However,
some differences between the two results exist and Hiller
et al. (1989) explain this by the Boussinesq approximation
and the imperfect adiabatic condition on the non-isother-
mal walls. The last hypothesis is envisaged by several works

(Le Peutrec and Lauriat, 1990; Fusegi et al., 1991b; Fusegi
and Hyun, 1994; Kowalewski, 1998; Leonardi et al., 1999).
In particular, Kowalewski (1998) and Leonardi et al.
(1999) highlight the important effect of the thermal bound-
ary conditions (TBC) at these walls on this spiraling flow.
In fact, the shape, the location of the merging region, direc-
tion and pitch of the inner spirals are extremely sensitive to
the TBC at the non-isothermal walls. They suggest the
implementation of measured temperature fields as thermal
boundary conditions. The authors also checked out the
effect of initial conditions and variables properties on the
z component of velocity responsible of the transverse flow.
For water-glycerin solution, the effect of variable fluid
properties appeared to be secondary compared with effects
of the TBC. Likewise, in the Rayleigh-Benard convection,
the effect of the TBC on the 3D behavior is primordial
(Kessler, 1987).

This cross flow is also identified in liquid-metals and in
the limiting case of zero Prandtl number. Viskanta et al.
(1986) mentioned that, for low values of Prandtl number,
the 3D effects are extended down to the mid-plane of the
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Fig. 1. The physical model and the coordinate system.

cavity instead of being confined to the front and back
walls. In 3D rectangular enclosure, Henry and Buffat
(1998) founded that particles spiral from the lateral walls
towards the XY-mid-plane with an increasing radius,
return to the lateral walls by a large spiral plane along
the walls and then flow inwardly the lateral walls. For this
category of fluids, both Juel et al. (2001) and Henry and
Buffat (1998) declared the three-dimensional cross-flows
responsible of the oscillatory convection. This is different
then Janssen et al. (1993) results for an air filled cavity
for which the instability mechanism responsible for the
bifurcation is the same in 2D and 3D cases. More detailed
bibliography on this subject can be found in the work of
Piazza and Ciofalo (2002).

Several two-dimensional studies are found for the prob-
lem of combined radiation and natural convection in rect-
angular participating medium (Chang et al., 1983; Yang,
1986; Yucel et al., 1989; Fusegi and Farouk, 1989; Tan
and Howell, 1991). A recent 3D numerical simulation of
radiation and convection in a differentially heated cubic
cavity using the discrete ordinates method is effectuated
by Colomer et al. (2004). The authors detail the effect of
the Planck number and the optical thickness on heat trans-
fer and effectuate a comparison between dimensional
results obtained from a two-dimensional model and those
obtained in the mid-plane of a long rectangular enclosure.
But, no special focus is given to the effect of radiation on
the three-dimensional spiraling flow.

In the present work, the qualitative effect of the radiative
heat transfer on the three-dimensional convection of a
cubic radiatively participating melt with Pr=13.6 and
Ra =10’ is investigated for different optical parameters

of the medium. The structure of the main flow is consider-
ably altered when changing the value of the conduction—
radiation parameter. The inner spiraling flows are found
very sensible in location and direction to the radiative heat
transfer. However, the peripheral spiraling motion is qual-
itatively insensitive to these parameters. In the following
and after the formulation of the problem and some valida-
tions of the numerical code, the first results concern the
main flow and heat transfer and the second the transverse
spiraling flow.

2. Formulation

As shown in Fig. 1, the physical system consists of a
cubic box with uniform imposed temperatures at two
opposite vertical walls and adiabatic top, bottom, front
and back walls. All these walls are assumed to be gray
and diffuse. The medium is considered as a gray, emit-
ting—absorbing and isotropically scattering fluid. Initially,
the medium and the box are at a uniform temperature
T, while the temperature of the left vertical wall are sud-
denly changed to higher value 7} and the temperature on
the right wall is maintained at 77,. It is assumed that the
flow in the system is laminar with no-slip conditions at
the walls, the physical properties are constant, and the
Boussinesq approximation is valid. The viscous dissipation
and the work of pressure forces are negligible.

Scaling length, velocity, and time are dimensionless by
W, o/ W and W?/o, and defining dimensionless temperature
as T =(T"-T.)/(T, —T,), the governing equations in
dimensionless vorticity vector potential form are:

Vi = - (1)
0D o= s o or or
a+(V ) — (& )V_VaH—PrRa[aZ,O, ax} (2)
or o -
— V)T
5 V)
R
— vﬁr+$(1 — wp) [/Idg —4n(1 + <DT)4] (3)
Y
where,
d=VxV 4)
V=Vx¢ (5)
. 0. 0 0
Vzal—l-a]—kak (6)

The Foregoing dimensionless parameters are given as
follows: Prandtl number Pr=7: Rayleigh number

!l 3 .
Ra = w, temperature ratio ¢ = % —1 and tl}se
conduction—radiation interaction parameter Rc = n? @
The boundary conditions for the considered problem are

(Wakashima and Saitoh, 2004): Hot wall (x = 1)
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T:L (1)1:0, d)Z:d)}:%:Ov
ox
0V, _or,
CE T T 7
Cold wall (x =0)
T:07 (1)1:07 ¢2:¢3:%:07
Ox
LS o,
C= % P ®)
Bottom and top walls (y =0, 1)
oT 0¢p
—5+quC/¢:O, 60220, ¢1: 3267)}2:07
0V, s
UTH T Ty ?
Front and back walls (z=0, 1)
or 0o
— S TOR/P =0, 03=0, ¢ =¢=—"2=0,
o, v,
0)1——57 wz—g (10)

and V|, =V, = V3=0 on all walls.

The radiative transfer equation, in absorbing—emitting
and isotropically scattering medium, can be written as (Sie-
gel and Howell, 1992; Borjini et al., 2003).

D prs.2) = iR 1)
S
where
0 o
R=(1- )l (s)+ﬂ/4 I(s,Q2)de (12)

The FTn finite volume method is utilized to discretize
Eq. (11). The computational domain is divided into finite
volumes and the intensity direction into finite number of
solid angles. The angular discretization of this method is
recommended for 3D problems because it reduces the ray
effect and the error due to non-symmetric angular discret-
ization under rotation of the three axes (Kim and Huh,
2000; Guedri et al., 2006). This equation is integrated over
each control volume and control angle. Using the step
scheme, one get the following system of algebraic coupled
equations in three-dimensional formulation (Guedri
et al., 2006).

aélf3 = a(,\,l(,v + aé]fs + alslé + all\llf\I + aglé + alTllT + bp

where

ay, = A4, max[-N! 0] (14)
ag = A4, max[—N/, 0] (15)
ay = Ad, max[—N!, 0] (16)

at = Ad;max[—N/, 0] (17)
ap = Ad, max[—Ny, 0] (18)
ay = Ad, max[—N/, 0] (19)
a, = Ad,, max[N},,0] + Ad. max[N/, 0]

+ A4 max[N!, 0] + A4, max [N, 0]

+ Ady, max[N}, 0] + A4, max[N!, 0] + pAv, (20)
bp = B.RyAv, (21)

For gray and diffuse surface, the dimensionless radiative
boundary conditions are:

Iy =e(1+0T)" + (1-2) > [Ny,

Ly

I AQ" (22)

More details on the finite volume method are in Chai et al.
(1994) and Guedri et al. (2006). The dimensionless conduc-
tive and radiative fluxes are evaluated along the isothermal
walls as follows:

Local conductive flux

oT
=—— 23
9. o (23)
Local radiative flux
L
g, =Y N'TAQ (24)
=1

The averaged values on isothermal walls of these quantities
are denoted g. and g, respectively.

Eqgs. (1)—(3) are discretized using the control volume
finite difference method (Patankar, 1980). The central-dif-
ference scheme for treating convective terms and the fully
implicit procedure to discretize the temporal derivatives
are retained. The grid is uniform in all directions with addi-
tional nodes on boundaries. The resulting non-linear alge-
braic equations are solved using the successive relaxation-
iterating scheme (Bejan, 1984). The equation of radiative
transfer is solved by repeatedly sweeping across grid until
convergence without taking into account the optimal order
in which the nodes should be visited. More details on the
present numerical algorithm are in the works of Borjini
et al. (2003) and Guedri et al. (2006). The time step 104,
spatial mesh 51° and the angular mesh of the FT(FVM
are retained to carry out all numerical tests. The solution
is considered acceptable when the following convergence
criterion is satisfied for each step of time and for each
dependent variable 4.

max |4" — A™7!|

<107 25
max |4"| (25)

where the superscript m designates the iteration number.
3. Validation tests
Results in the absence of radiation are compared, in

Table 1, with the benchmark solutions of Wakashima
and Saitoh (2004) with air and for different Rayleigh
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Table 1
Comparison between the present results and literature for non-radiative fluid, Pr=10.71
¢3/VPr- Ra (center) 3/v/Pr- Ra (center) S (center) g
Ra= 10* Present results 0.05573 1.1091 0.8617 2.06242
Wakashima and Saitoh (2004) 0.05492 1.1018 0.8634 2.0624
Deviation (%) 1.47 0.66 0.19 0.01
Ra= 10° Present results 0.03452 0.2583 1.0836 4.3771
Wakashima and Saitoh (2004) 0.03403 0.2573 1.0867 4.3668
Deviation (%) 1.44 0.39 0.29 0.24
Table 2

Comparison of heat transfer on the hot wall between the present results
and Colomer et al. results (2004) (quantities in the parentheses) for
radiative fluid, Pr=0.71, Rc = 1/(0.016 x 17), and & = 1/17

=0 1 10
Ra= 10> G 1.057 (1.76)  1.698 (1.76)  1.651 (1.54)
GRe/® 6487 (6.20)  4.612 (4.64)  1.2469 (1.16)
10* 7e 2.038 (2.26)  2.45(2.25) 2.229 (2.11)
GRe/® 689 (6.28) 5.122 (4.69)  1.65 (1.54)
10° 7e 4133 (4.37)  4.038(3.92)  4.458 (4.2])
@Re/® 7227 (6.52)  5.88 (5.44) 2.992 (2.8)

numbers. The deviations for both the flow and heat trans-
fer variables are tolerable for three-dimensional modeling
(Pepper and Hollands, 2002). The validation of the three-
dimensional radiative component of the present code can
be found in Borjini et al. (2003)and Guedri et al. (2006).
For the combined model, comparison of radiative and con-
ductive heat fluxes on the hot wall, with the recent results
of Colomer et al. (2004), is presented, in Table 2, for differ-
ent optical thicknesses. A remarkable difference is observed
between the two results for both radiative and conductive
components of the heat flux. It is important to signal that
Colomer et al. (2004) used the Discrete Ordinates Method
with appropriate directions and for the 3D idealized classi-
cal furnace they compare the radiative heat flux only with
the P3 method results.

4. Results and discussion

The effect of the radiative heat transfer on the character-
istics of the main flow and the three-dimensional cross flow
will be discussed for Ra =10, Pr=13.6, ® = 0.1, black
isothermal walls and perfectly reflecting adiabatic walls.
This Prandtl number corresponds to the radiatively partic-
ipating LiNbO3; melt (Kobayachi et al., 2000). Firstly, the
effects of the conduction-to radiation parameter, optical
thickness and scattering albedo on the main flow and heat
transfer are rapidly discussed. Secondly, the three-dimen-
sional behavior of the flow is analyzed for absorbing—emit-
ting medium and for different optical widths. In the
following, for simplicity and due to the symmetry of the
problem, only the half of the enclosure is interpreted.

4.1. Effect of radiation on the main flow

In the absence of any contrary indication, an absorbing—
emitting medium with t =1 is used. In Fig. 2, is repre-

sented the velocity projection on the XY plane for Rc =0
(without radiation), 10 and oo (radiation-induced natural
convection). The same vector-size scale is used for all cases.
In absence of the radiative transfer, a ‘cats eye’ flow slightly
titled toward the cold wall is established. When Rc
increases the flow in the core is intensified and only one
vortex is observed. This grouping of the two separate cores
is already predicted in 2D simulation (Tan and Howell,
1991). However, with the 3D modeling, the streamlines in
the xy-planes are not closed. For instance, in the core
and for Rc — oo a convergent quasi-logarithmic spiral
motion is established for z = 0.5. Near the back and front
walls, a divergent more pronounced quasi-logarithmic
spiral motion takes place (this behavior will be discussed
later). The corresponding isothermal surfaces shown in
Fig. 3 bring to the fore the decrease of the vertical thermal
stratification in the center when the medium is radiatively
participating. This dressing up of isotherms is due to the
radiative heating of the fluid near the top of the hot wall
and near the bottom of the cold wall. One notes the 3D dis-
tribution of temperature for Rc =0 and 10. For Rc — oo,
the temperature field is independent of the flow field and
the pure radiative profile of isotherms is obtained. These
isothermal surfaces are quasi-equidistant except near the
active walls. The distributions of conductive and radiative
heat fluxes on the hot wall for Rc =0, 1 and oo are repre-
sented in Fig. 4. It is remarkable that radiation increases
conductive heat transfer at the top of the hot wall and
decreases it at the bottom and the reverse is true for the
cold wall (results not represented here but easily deduced
by inversing the y-direction in Fig. 4). Due to the temper-
ature levels, the radiative flux is higher on the hot wall
while the conductive flux is more important on the cold
wall. For Rc =0, there are maximums of heat transfer at
the top of the cold wall and at the bottom of the hot wall.
The radiative heat transfer tends to homogenize these dis-
tributions. These characteristics are qualitatively similar
to those obtained for air with 3D (Colomer et al., 2004)
or 2D (Tan and Howell, 1991) computations. As predicted
for Rc — oo, the heat flux distributions do not present any
effect of gravity and are almost identical on hot and cold
walls. Colomer et al. (2004) also observed an increase of
the heat flux at both ends of z axis. This increase is more
important for optical thin media. Fig. 4 shows also that
the side walls effects on conductive heat transfer are more
pronounced at the bottom of the hot wall and the top of
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Fig. 2. Influence of the radiation—conduction parameter on the velocity
. : —10° _
vectors projected onto the XY-mid-plane for Ra=10", Pr=13.6 and Fig. 3. Effect of the radiation-conduction parameter on temperature
t=1.(a) Re=0; (b) Re =10; and (¢) Re = oo. distribution for Ra=10°, Pr=13.6 and t = 1. (a) Re=0; (b) Rc = 10;
and (c) Rc = oo.
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Conductive flux

c Radiative flux

Fig. 4. Effect of the radiation—conduction parameter on local conductive and radiative flux distributions on hot wall for Ra = 10°, Pr=13.6 and = = 1.
(a) iso-values of g. for Rc = 0; (b) iso-values of g. for Rc = 1; (c) iso-values of g,.Rc/® for Rec = 1; (d) iso-values of g, for Rc = occ.

the cold wall. The reverse is true for the radiative heat flux.
Table 3 resumes the effect of radiative properties on aver-
aged heat transfer on the active walls for Rc = 1. Like in
the results for an air filled square cavity (Tan and Howell,
1991), the optical width has more significant effect than the
scattering albedo. The strong dependency of g, on 7 is obvi-
ous according to this table.

4.2. Effect of radiation on the transverse flow

The transverse flow is a direct manifestation of the 3D
nature of the flow and it is primordial to study time-depen-
dency and transition. This three-dimensional motion is
generated by the presence of no-slip end walls (Mallinson
and de Vahl Davis, 1977) which provokes the 3D iner-
tial-end effect and by the 3D thermal-end effect (tempera-
ture gradient near the side-walls). For Rayleigh—Benard

Table 3
Effect of optical parameters on heat transfer for Ra = 10°, Pr = 13.6, and
Rec=1

Hot wall Cold wall
T Wo qe g:Rc/® qe g:Rc/®
0.1 0 4.503 2.115 4.541 2.055
1 0 4.335 1.845 4.465 1.688
10 0 4.538 1.017 4.664 0.8774
1 0.5 4.387 1.77 4.484 1.649
1 0.9 4.488 1.655 4.542 1.615

air convection, Kessler (1987) mentioned that thermal
effects are restricted to a small zone near the walls while
the inertial effects are perceptible in the whole box. In fact,
and as mentioned above, the parcel of particles that are
traveling in the xy planes did not stay on the same plane
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and Pr = 13.6 showing inner spiraling flows (a) and ‘peripheral’ spiraling flows (b).

Fig. 5. Some particle tracks in absence of radiation, for Ra = 10°

0.9.

0.5; (e) y

Fig. 6. Projections of flow lines on the yz and xz planes in absence of radiation, for Ra = 10° and Pr=13.6. (a) x =0.5; (b) x =0.68; (c) x =0.9;

dy
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and a weak ‘helically’ flow exists. The corresponding veloc-
ity component V3 is in general an order of magnitude smal-
ler than the main flow (V; and V5) (Fusegi et al., 1991a;
Wakashima and Saitoh, 2004). Contrary to the two-dimen-
sional flow, the projection of streamlines in the XY plane
are not closed but spirals towards the center of the vortices
or toward the side walls.

It will be shown in the following results that different
globally convergent or divergent spiraling flows towards
the central XY plane take place and the effect of the radia-
tive heat transfer on three-dimensional convection is clearly
identified in the core of the box. In fact, in the presence of
radiation, a divergent inner spiraling flow is established
while for Rc = 0, this central transverse flow is convergent.
However, the flow at the periphery is always globally con-
vergent towards the XY plane independently of the radia-
tive behavior of the fluid.

Before beginning the depictions of these spiraling flows,
special tests with three different Prandtl numbers are effec-
tuated. The results giving some particles tracks for
Pr=6300 and Ra =7.910* (figure not shown here), con-
cords globally with the experimental and the numerical
results of Hiller et al. (1989) and Kowalewski (1998). In
fact, near the centers of the front and the back walls, the
streamlines split into two spiraling convergent flows
toward the X'Y-mid-plane. After this, the streamlines circu-
late back toward these walls and finally, toward the XY
plane near the side walls. The results are sensibly the same
for Pr=0.71 and Ra = 10’ but the inner spiraling flow is
directed toward the front and back walls. For lower Pra-
ndtl numbers (Pr = 0.05) and for Ra = 10°, the solution
is oscillatory with two-vortices-main-structure flow. Fur-
thermore, the inner spiraling motion is more complicated
and the 3D effects are intensified near the center of the
XY-mid-plane of the cavity. This is globally in line with
the conclusions of Viskanta et al. (1986).

For Pr=13.6, Ra = 10°, and for the case without radi-
ation, a different and more complex transverse flow is reg-
istered. In fact, two central spiraling motions exist and
converge toward the intermediate xy-plane situated at
z 2 0.65 (Fig. 5a). This is followed by a divergent flow until
the front wall as shown in this figure. After this, a succes-
sion of convergent, divergent and convergent spiraling
flows between this wall and the plane XY is accomplished
(Fig. 5b). Fig. 6a—c represent the projection of the stream-
lines on the yz plane for three distinct x positions. Near the
periphery (x =0.9) and despite that the flow is globally
convergent toward the central plane XY, a local divergent
flow is registered which invokes a ‘concavity’, in the yz
plane of the streamlines. The cross-flow structure is more
complex for x = 0.5 and in the zone situated between the
two inner spirals and the XY plane (0.5 <z <0.65), the
three-dimensional velocity V3 is relatively very weak which
can define a quasi-2D region. The two appearing vortices in
this figure are monitoring the aforementioned succession of
convergent and divergent flows. Furthermore, in the plane
x = 0.68 which splits one inner spiral, the vertical superpo-

sition of convergent and divergent flows is obvious. The
corresponding results for the plane xz are represented in
Fig. 6d and e. For y = 0.9, the projection of the streamlines
brings to the fore the ‘convexity’ towards the plane XY, of

|
1

Fig. 7. Projections of streamlines in the xy plane, without radiation, for
Ra = 10° and Pr=13.6. (a) z=0.5; (b) z=0.9; and (c) z=0.99.
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the converging peripheral spiral flow. The quasi-2D zone is
clearly discernible in the plane y = 0.5 and near z=0.5
(except on the axe x=0.5). As mentioned above, the
streamlines in the xy planes are not closed. This is con-
firmed in Fig. 7a which shows convergent motion toward
the two vortices in the XY plane. This structure is modified
for z=0.9 and the projections of peripheral streamlines
spiral towards the walls (Fig. 7b). This structure persists
until z=0.99 (Fig. 7c) and consequently no merging of
the vortices is observed. While in the center the flow stills
convergent toward the centers of these vortices.

The above results are dramatically altered by the surface
to surface and the internal radiative heat transfers. For
Rc=1 and t=0.1, the inner spiraling flow is divergent
and works directly between the XY plane and the front
and back walls (Fig. 8a). The merging of the two vortices
occurs between this plane and the cited walls. The particle
track displayed in Fig. 8b resumes both inner divergent and
peripheral convergent transverse spiraling flows. The
peripheral convergent flow is similar to which obtained in
pure natural convection. In addition, the abovementioned
‘concavity’ and ‘convexity’ in the plane x=0.9 and
y=10.9, respectively, are retrieved (figure not shown here).
However, for y = 0.5 (Fig. 9b), a great change is observed
and the flow is clearly divergent from the plane XY. The
projections of streamlines in the x = 0.5 plane (Fig. 9a)
are also considerably different from those obtained without
radiation and the symmetry between the flows into the top
and bottom quadrants is broken. These results demon-
strate that radiative heat transfer increases the three-
dimensional transverse flow in the center of the enclosure
and so restricts the aforementioned quasi-2D zone. In fact,
for z=0.8, the initial central two-vortices-flow (Fig. 10a)
changes and the streamlines become divergent (spiral

a
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Fig. 9. Projections of flow lines on the yz and xz planes, for Ra = 10,
Pr=13.6, Rc=1and t=0.1. (a) x=0.5; (b) y=0.5.

toward the boundaries) while the outer streamlines still
convergent (Fig. 10b). For z = 0.85 the two vortices merge
into one vortex (Fig. 10c) and at z=0.9 all the flow is
divergent. So, for radiatively participating fluid, the main
flow manifests an one-vortex structure near the front and
back walls even with moderate value of the conduction—
radiation parameter (Rc =1).

The results for 1 =1 and 10 are qualitatively analogous
to those for 1 =0.1. However, when the optical thickness
increases, the radius of the central-helically diverging
motions increases and the merging of the two vortices
occurs near the plane XY. In other tests, the values of
wo = 0.5, 0.9 do not influence the structure of the trans-
verse flow.

Fig. 8. Some particle tracks for Ra = 10°, Pr=13.6, Rc = 1, 1 = 0.1 showing inner spiraling flows (a) and ‘peripheral’ spiraling flows (b).
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Fig. 10. Projections of streamlines in the xy plane, for Ra = 10°, Pr=13.6, Re=1and t =0.1. (a) z=0.5 ; (b) z=0.8; (¢) z = 0.85; and (d) z=0.9.

5. Conclusion

The present numerical results show, for Pr = 13.6 and in
absence of radiation, the existence of a quasi-2D zone far
from the end walls and near the center of the XY-mid-
plane. The inner spiraling transverse flow begins half away
between this plane and the front and back walls.

The effect of the radiative heat transfer on the 3D behav-
ior of the flow is significant in the core of the enclosure. The
inner spiraling flows are found very sensible in location and
direction to the radiative heat transfer, while the peripheral
spiraling motion is qualitatively insensitive to this mode.
This postulates that radiative heat transfer conveys the
3D-thermal-end-effect to the bulk of the cavity. In fact,
the inner convergent spiraling flow occurring in pure natu-
ral convection becomes oriented toward the front and back
walls in presence of internal radiation. However, the flow at
the periphery is convergent toward the XY-mid-plane for
both radiatively participating and non-participating fluid.

In the absence of radiation and near the front and back
walls, the fluid at the periphery spirals outwardly and no
combination of the two vortices is observed. However, for

a semitransparent medium and when approaching the front
and back walls, the particles in the center flow outwardly
and a combination of the two vortices is observed. The loca-
tion of this merging and the radius of the helically motion
are sensible to the optical thickness while the scattering
albedo is without effect on the spiraling transverse flow.

This is true for a moderately radiatively participating
fluid. In fact, when radiation is predominant (important
value of Rc), even the structure of the flow in the XY-
mid-plane is altered by this mode of heat transfer.

The results of the present topological analysis justifies a
future quantitative parametric study of the effect of radia-
tion on the 3D characteristics of the flow in a differentially
heated cubic enclosure.
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